8.5 Use Properties of Trapezoids and Kites

A **trapezoid** is a quadrilateral with exactly one pair of parallel sides. The parallel sides are the **bases**.

A trapezoid has two pairs of base angles. For example, in trapezoid ABCD, $\angle A$ and $\angle D$ are one pair of base angles, and $\angle B$ and $\angle C$ are the second pair. The nonparallel sides are the legs of the trapezoid.

THEOREM 8.14

If a trapezoid is isosceles, then each pair of base angles is congruent.

If trapezoid *ABCD* is isosceles, then $\angle A \cong \angle D$ and $\angle B \cong \angle C$.

THEOREM 8.15

If a trapezoid has a pair of congruent base angles, then it is an isosceles trapezoid.

If $\angle A \cong \angle D$ (or if $\angle B \cong \angle C$), then trapezoid *ABCD* is isosceles.

THEOREM 8.16

A trapezoid is isosceles if and only if its diagonals are congruent.

Trapezoid *ABCD* is isosceles if and only if $\overline{AC} \cong \overline{BD}$.

THEOREM 8.17 Midsegment Theorem for Trapezoids

The midsegment of a trapezoid is parallel to each base and its length is one half the sum of the lengths of the bases.

THEOREM 8.18

If a quadrilateral is a kite, then its diagonals are perpendicular.

If quadrilateral ABCD is a kite, then $\overline{AC} \perp \overline{BD}$.

THEOREM 8.19

If a quadrilateral is a kite, then exactly one pair of opposite angles are congruent.

If quadrilateral *ABCD* is a kite and $\overline{BC} \cong \overline{BA}$, then $\angle A \cong \angle C$ and $\angle B \cong \angle D$.

