A trapezoid is a quadrilateral with exactly one pair of parallel sides. The parallel sides are the bases.

A trapezoid has two pairs of base angles. For example, in trapezoid $A B C D, \angle A$ and $\angle D$ are one pair of base angles, and $\angle B$ and $\angle C$ are the second pair. The nonparallel sides are the legs of the trapezoid.

THEOREM 8.14

If a trapezoid is isosceles, then each pair of base angles is congruent.
If trapezoid $A B C D$ is isosceles, then $\angle A \equiv \angle D$ and $\angle B \equiv \angle C$.

THEOREM 8.15

If a trapezoid has a pair of congruent base angles, then it is an isosceles trapezoid.

If $\angle A \cong \angle D$ (or if $\angle B \cong \angle C$), then trapezoid $A B C D$ is isosceles.

Theorem 8.16

A trapezoid is isosceles if and only if its diagonals are congruent.
Trapezoid $A B C D$ is isosceles if and only if $\overline{A C} \cong \overline{B D}$.

Theorem 8.17 Midsegment Theorem for Trapezoids

The midsegment of a trapezoid is parallel to each base and its length is one half the sum of the lengths of the bases.
If $\overline{M N}$ is the midsegment of trapezoid $A B C D$, then
 $\overline{M N}\|\overline{A B}, \overline{M N}\| \overline{D C}$, and $M N=\frac{1}{2}(A B+C D)$.

THEOREM 8.18

If a quadrilateral is a kite, then its diagonals are perpendicular.
If quadrilateral $A B C D$ is a kite, then $\overline{A C} \perp \overline{B D}$.

THEOREM 8.19

If a quadrilateral is a kite, then exactly one pair of opposite angles are congruent.
If quadrilateral $A B C D$ is a kite and $\overline{B C} \approx \overline{B A}$, then $\angle A \equiv \angle C$ and $\angle B \neq \angle D$.

