8.5 Properties of Rhombuses, Rectangles, and Squares

In this lesson, you will learn about three special types of parallelograms: rhombuses, rectangles, and squares.

A rhombus is a parallelogram with four congruent sides.

A rectangle is a parallelogram with four right angles.

A square is a parallelogram with four congruent sides and four right angles.

Rhombus Corollary

A quadrilateral is a rhombus if and only if it has four congruent sides.
$A B C D$ is a rhombus if and only if $\overline{A B} \cong \overline{B C} \approx \overline{C D} \cong \overline{A D}$.

Rectangle Corollary

A quadrilateral is a rectangle if and only if it has four right angles.
$A B C D$ is a rectangle if and only if $\angle A, \angle B, \angle C$,
 and $\angle D$ are right angles.

Square Corollary

A quadrilateral is a square if and only if it is a rhombus and a rectangle.
$A B C D$ is a square if and only if $\overline{A B} \cong \overline{B C} \cong \overline{C D} \cong \overline{A D}$ and $\angle A, \angle B, \angle C$, and $\angle D$ are right angles.

THEOREM 8.11

A parallelogram is a rhombus if and only if its diagonals are perpendicular.
$\square A B C D$ is a rhombus if and only if $\overline{A C} \perp \overline{B D}$.

Theorem 8.12

A parallelogram is a rhombus if and only if each diagonal bisects a pair of opposite angles.
$\square A B C D$ is a rhombus if and only if $\overline{A C}$ bisects $\angle B C D$ and $\angle B A D$ and $\overline{B D}$ bisects $\angle A B C$ and $\angle A D C$.

THEOREM 8.13

A parallelogram is a rectangle if and only if its diagonals are congruent.
$\square A B C D$ is a rectangle if and only if $\overline{A C} \cong \overline{B D}$.

