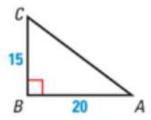
7.7 Solve Right Triangles

Inverse Trigonometric Ratios

Let $\angle A$ be an acute angle.

Inverse Tangent If $\tan A = x$, then $\tan^{-1} x = m \angle A$.

$$\sin^{-1}\frac{BC}{AB}=m\angle A$$


 $\tan^{-1} \frac{BC}{AC} = m \angle A$

Inverse Sine If
$$\sin A = y$$
, then $\sin^{-1} y = m \angle A$.

Inverse Cosine If
$$\cos A = z$$
, then $\cos^{-1} z = m \angle A$.

$$\cos^{-1}\frac{AC}{AB}=m\angle A$$

Use a calculator to approximate the measure of $\angle A$ to the nearest tenth of a degree.

Solution

Because $\tan A = \frac{15}{20} = \frac{3}{4} = 0.75$, $\tan^{-1} 0.75 = m \angle A$. Use a calculator. $\tan^{-1} 0.75 \approx 36.86989765 \cdots$

So, the measure of ∠A is approximately 36.9°.

Let $\angle A$ and $\angle B$ be acute angles in two right triangles. Use a calculator to approximate the measures of $\angle A$ and $\angle B$ to the nearest tenth of a degree.

a.
$$\sin A = 0.87$$

b.
$$\cos B = 0.15$$

Solution

a.
$$m \angle A = \sin^{-1} 0.87 \approx 60.5^{\circ}$$

b.
$$m \angle B = \cos^{-1} 0.15 \approx 81.4^{\circ}$$