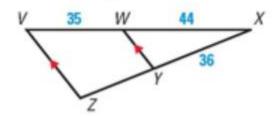
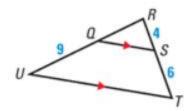

6.5 Use Proportionality Theorems

THEOREM 6.4 Triangle Proportionality Theorem


THEOREM 6.5 Converse of the Triangle Proportionality Theorem

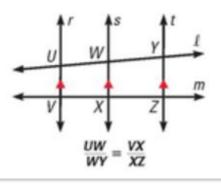
If a line divides two sides of a triangle proportionally, then it is parallel to the third side.



If
$$\frac{H}{TQ} = \frac{HU}{US'}$$
 then $TU \parallel C$

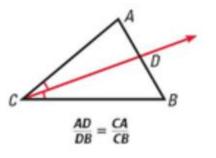
1. Find the length of YZ.

In the diagram, $\overline{QS} \parallel \overline{UT}$, RS = 4, ST = 6, and QU = 9. What is the length of \overline{RQ} ?



Solution

- $\frac{RQ}{QU} = \frac{RS}{ST}$ Triangle Proportionality Theorem
- $\frac{RQ}{9} = \frac{4}{6}$ Substitute.
- RQ = 6 Multiply each side by 9 and simplify.


THEOREM 6.6

If three parallel lines intersect two transversals, then they divide the transversals proportionally.

THEOREM 6.7

If a ray bisects an angle of a triangle, then it divides the opposite side into segments whose lengths are proportional to the lengths of the other two sides.

