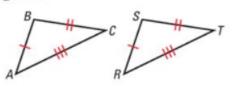
4.4/4.5 Prove Triangles Congruent by SSS, SAS and HL

POSTULATE 19 Side-Side-Side (SSS) Congruence Postulate

If three sides of one triangle are congruent to three sides of a second triangle, then the two triangles are congruent.

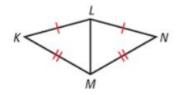
If Side $\overline{AB} \cong \overline{RS}$, Side $\overline{BC} \cong \overline{ST}$, and Side $\overline{CA} \cong \overline{TR}$, then $\triangle ABC \cong \triangle RST$.



EXAMPLE 1 Use the SSS Congruence Postulate

Write a proof.

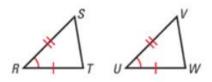
GIVEN \blacktriangleright $\overline{KL} \cong \overline{NL}, \overline{KM} \cong \overline{NM}$ **PROVE** $\triangleright \bigtriangleup KLM \cong \bigtriangleup NLM$ **Proof** It is given that $\overline{KL} \cong \overline{NL}$ and $\overline{KM} \cong \overline{NM}$. By the Reflexive Property, $\overline{LM} \cong \overline{LM}$. So, by the SSS Congruence Postulate, $\bigtriangleup KLM \cong \bigtriangleup NLM$.



POSTULATE 20 Side-Angle-Side (SAS) Congruence Postulate

If two sides and the included angle of one triangle are congruent to two sides and the included angle of a second triangle, then the two triangles are congruent.

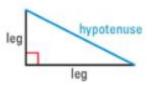
If Side $\overline{RS} \cong \overline{UV}$, Angle $\angle R \cong \angle U$, and Side $\overline{RT} \cong \overline{UW}$, then $\triangle RST \cong \triangle UVW$.



EXAMPLE 1 Use the SAS Congruence Postulate

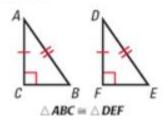
Write a proof. GIVEN $\blacktriangleright \overline{BC} \cong \overline{DA}, \ \overline{BC} \parallel \overline{A}$	\overline{D} 1
PROVE $\land ABC \cong \land CDA$	
STATEMENTS	REASONS
S 1. $\overline{BC} \cong \overline{DA}$	1. Given
2. $\overline{BC} \parallel \overline{AD}$	2. Given
A R (DCA - (DAC	3. Alternate Interior Angles Theorem
A 3. $\angle BCA \cong \angle DAC$	0
A 3. $\angle BCA \cong \angle DAC$ S 4. $\overline{AC} \cong \overline{CA}$	4. Reflexive Property of Congruence

RIGHT TRIANGLES In a right triangle, the sides adjacent to the right angle are called the **legs**. The side opposite the right angle is called the **hypotenuse** of the right triangle.



THEOREM 4.5 Hypotenuse-Leg (HL) Congruence Theorem

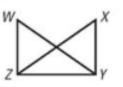
If the hypotenuse and a leg of a right triangle are congruent to the hypotenuse and a leg of a second right triangle, then the two triangles are congruent.



EXAMPLE 3 Use the Hypotenuse-Leg Congruence Theorem

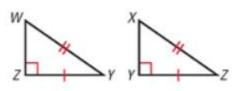
Write a proof.

GIVEN \blacktriangleright $\overline{WY} \cong \overline{XZ}, \ \overline{WZ} \perp \overline{ZY}, \ \overline{XY} \perp \overline{ZY}$ PROVE $\blacktriangleright \bigtriangleup WYZ \cong \bigtriangleup XZY$



Solution

Redraw the triangles so they are side by side with corresponding parts in the same position. Mark the given information in the diagram.



STATEMENTS

- H 1. $\overline{WY} \cong \overline{XZ}$
 - **2.** $\overline{WZ} \perp \overline{ZY}, \overline{XY} \perp \overline{ZY}$
 - **3.** $\angle Z$ and $\angle Y$ are right angles.
 - △WYZ and △XZY are right triangles.
- L 5. $\overline{ZY} \cong \overline{YZ}$ 6. $\triangle WYZ \cong \triangle XZY$

- REASONS 1. Given
- 2. Given
- **3.** Definition of \perp lines
- 4. Definition of a right triangle
- 5. Reflexive Property of Congruence
- 6. HL Congruence Theorem