The slope of a nonvertical line is the ratio of vertical change (rise) to horizontal change (run) between any two points on the line.
If a line in the coordinate plane passes through points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ then the slope m is

$$
m=\frac{\text { rise }}{\text { run }}=\frac{\text { change in } y}{\text { change in } x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} .
$$

Slope of Lines in the Coordinate Plane

Negative slope: falls from left to right, as in line j
Positive slope: rises from left to right, as in line k
Zero slope (slope of 0): horizontal, as in line ℓ
Undefined slope: vertical, as in line n

Find the slopes of line a and line d.

Solution

Slope of line a : $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4-2}{6-8}=\frac{2}{-2}=-1$
Slope of line d : $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4-0}{6-6}=\frac{4}{0}$,
which is undefined.

Guided Practice for Example 1
Use the graph in Example 1. Find the slope of the line.

1. Line b
2. Line c

Postulate 17 Slopes of Parallel Lines

In a coordinate plane, two nonvertical lines are parallel if and only if they have the same slope.
Any two vertical lines are parallel.

Postulate 18 Slopes of Perpendicular Lines

In a coordinate plane, two nonvertical lines are perpendicular if and only if the product of their slopes is $\mathbf{- 1}$.

Horizontal lines are perpendicular to vertical lines.

