The **slope** of a nonvertical line is the ratio of vertical change (*rise*) to horizontal change (*run*) between any two points on the line.

If a line in the coordinate plane passes through points (x_1, y_1) and (x_2, y_2) then the slope m is

$$m = \frac{\text{rise}}{\text{run}} = \frac{\text{change in } y}{\text{change in } x} = \frac{y_2 - y_1}{x_2 - x_1}.$$

Slope of Lines in the Coordinate Plane

Negative slope: falls from left to right, as in line j **Positive slope:** rises from left to right, as in line k **Zero slope (slope of 0):** horizontal, as in line ℓ **Undefined slope:** vertical, as in line n

Find the slopes of line a and line d.

Solution

Slope of line **a**:
$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{4 - 2}{6 - 8} = \frac{2}{-2} = -1$$

Slope of line **d**:
$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{4 - 0}{6 - 6} = \frac{4}{0}$$
,

which is undefined.

GUIDED PRACTICE

for Example 1

Use the graph in Example 1. Find the slope of the line.

1. Line b

2. Line *c*

POSTULATE 17 Slopes of Parallel Lines

In a coordinate plane, two nonvertical lines are parallel if and only if they have the same slope.

Any two vertical lines are parallel.

POSTULATE 18 Slopes of Perpendicular Lines

In a coordinate plane, two nonvertical lines are perpendicular if and only if the product of their slopes is -1.

Horizontal lines are perpendicular to vertical lines.

