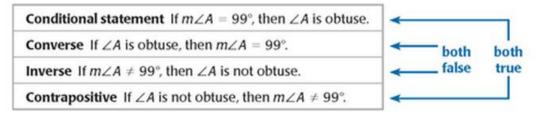
2.2 Analyze Conditional Statements

A conditional statement is a logical statement that has two parts, a hypothesis and a conclusion. When a conditional statement is written in if-then form, the "if" part contains the hypothesis and the "then" part contains the conclusion. Here is an example:


NEGATION The negation of a statement is the *opposite* of the original statement. Notice that Statement 2 is already negative, so its negation is positive.

Statement 1 The ball is red. Statement 2 The cat is *not* black.

Negation 1 The ball is *not* red. Negation 2 The cat is black.

RELATED CONDITIONALS To write the **converse** of a conditional statement, exchange the **hypothesis** and **conclusion**.

To write the **inverse** of a conditional statement, negate both the hypothesis and the conclusion. To write the **contrapositive**, first write the converse and then negate both the hypothesis and the conclusion.

EXAMPLE 2 Write four related conditional statements

Write the if-then form, the converse, the inverse, and the contrapositive of the conditional statement "Guitar players are musicians." Decide whether each statement is *true* or *false*.

Solution

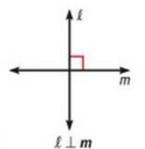
If-then form If you are a guitar player, then you are a musician.
True, guitars players are musicians.

Converse If you are a musician, then you are a guitar player. *False*, not all musicians play the guitar.

Inverse If you are not a guitar player, then you are not a musician. *False*, even if you don't play a guitar, you can still be a musician.

Contrapositive If you are not a musician, then you are not a guitar player. *True*, a person who is not a musician cannot be a guitar player.

DEFINITIONS You can write a definition as a conditional statement in if-then form or as its converse. Both the conditional statement and its converse are true. For example, consider the definition of perpendicular lines.


KEY CONCEPT

For Your Notebook

Perpendicular Lines

Definition If two lines intersect to form a right angle, then they are perpendicular lines.

The definition can also be written using the converse: If two lines are perpendicular lines, then they intersect to form a right angle.

You can write "line ℓ is perpendicular to line m" as $\ell \perp m$.

BICONDITIONAL STATEMENTS When a conditional statement and its converse are both true, you can write them as a single biconditional statement. A biconditional statement is a statement that contains the phrase "if and only if."

Any valid definition can be written as a biconditional statement.

EXAMPLE 4 Write a biconditional

Write the definition of perpendicular lines as a biconditional.

Solution

Definition If two lines intersect to form a right angle, then they are perpendicular.

Converse If two lines are perpendicular, then they intersect to form a right angle.

Biconditional Two lines are perpendicular if and only if they intersect to form a right angle.