2.1 Use Inductive Reasoning

INDUCTIVE REASONING A **conjecture** is an unproven statement that is based on observations. You use **inductive reasoning** when you find a pattern in specific cases and then write a conjecture for the general case.

EXAMPLE 3 Make a conjecture

Given five collinear points, make a conjecture about the number of ways to connect different pairs of the points.

Solution

Make a table and look for a pattern. Notice the pattern in how the number of connections increases. You can use the pattern to make a conjecture.

Picture Number of connections 1 3 6 ?	Number of points	1	2	3	4	5
	Picture		••	\bigcirc	⊕	(1)
		0	1	3	6	?

DISPROVING CONJECTURES To show that a conjecture is true, you must show that it is true for all cases. You can show that a conjecture is false, however, by simply finding one *counterexample*. A **counterexample** is a specific case for which the conjecture is false.

EXAMPLE 5 Find a counterexample

A student makes the following conjecture about the sum of two numbers. Find a counterexample to disprove the student's conjecture.

Conjecture The sum of two numbers is always greater than the larger number.

Solution

To find a counterexample, you need to find a sum that is less than the larger number.

$$-2 + -3 = -5$$

 $-5 > -2$