11.7 Volume of Pyramids and Cones

Theorem 11.9 Volume of a Pyramid

The volume V of a pyramid is

$$
V=\frac{1}{3} B h
$$

where B is the area of the base and h is the height.

Theorem 11.10 Volume of a Cone

The volume V of a cone is

$$
V=\frac{1}{3} B h=\frac{1}{3} \pi r^{2} h
$$

where B is the area of the base, h is the height, and r is the radius of the base.
(xy) algebra Originally, the pyramid had height 144 meters and volume $2,226,450$ cubic meters. Find the side length of the square base.

Solution

$$
\begin{aligned}
V & =\frac{1}{3} B h & & \text { Write formula. } \\
2,226,450 & =\frac{1}{3}\left(x^{2}\right)(144) & & \text { Substitute. } \\
6,679,350 & =144 x^{2} & & \text { Multiply each side by } 3 . \\
46,384 & \approx x^{2} & & \text { Divide each side by } 144 . \\
215 & \approx x & & \text { Find the positive square root. }
\end{aligned}
$$

$$
V=\frac{1}{3} B h=\frac{1}{3} \pi r^{2} h
$$

Khafre's Pyramid, Egypt

Find the volume of the right cone.

Solution

To find the radius r of the base, use trigonometry.

$$
\begin{aligned}
\tan 65^{\circ} & =\frac{\text { opp. }}{\text { adj. }} & & \text { Write ratio. } \\
\tan 65^{\circ} & =\frac{16}{r} & & \text { Substitute. } \\
r & =\frac{16}{\tan 65^{\circ}} \approx 7.46 & & \text { Solve for } r .
\end{aligned}
$$

Use the formula for the volume of a cone.

$$
V=\frac{1}{3}\left(\pi r^{2}\right) h \approx \frac{1}{3} \pi\left(7.46^{2}\right)(16) \approx 932.45 \mathrm{ft}^{3}
$$

