11.6 Volume of Prisms and Cylinders

Postulate 27 Volume of a Cube Postulate

The volume of a cube is the cube of the length of its side.

Postulate 28 Volume Congruence Postulate

If two polyhedra are congruent, then they have the same volume.

Postulate 29 Volume Addition Postulate

The volume of a solid is the sum of the volumes of all its nonoverlapping parts.

Theorem 11.6 Volume of a Prism

The volume V of a prism is

$$
V=B h,
$$

where B is the area of a base and h is the height.

Theorem 11.7 Volume of a Cylinder

The volume V of a cylinder is

$$
V=B h=\pi r^{2} h,
$$

where B is the area of a base, h is the height, and r is the radius of a base.

Find the volume of the solid.
a. Right trapezoidal prism
b. Right cylinder

Solution

a. The area of a base is $\frac{1}{2}(3)(6+14)=30 \mathrm{~cm}^{2}$ and $h=5 \mathrm{~cm}$.

$$
V=B h=30(5)=150 \mathrm{~cm}^{3}
$$

b. The area of the base is $\pi \cdot 9^{2}$, or $81 \pi \mathrm{ft}^{2}$. Use $h=6 \mathrm{ft}$ to find the volume.

$$
V=B h=81 \pi(6)=486 \pi \approx 1526.81 \mathrm{ft}^{3}
$$

Theorem 11.8 Cavalieri's Principle

If two solids have the same height and the same cross-sectional area at every level, then they have the same volume.

