11.2 Areas of Circles and Sectors

Theorem 11.2 Area of a Circle

The area of a circle is π times the square of the radius.

$A=\pi r^{2}$

Find the indicated measure.
a. Area
$r=2.5 \mathrm{~cm}$

b. Diameter
$A=113.1 \mathrm{~cm}^{2}$

Solution

a. $A=\pi r^{2} \quad$ Write formula for the area of a circle.

$$
\begin{array}{ll}
=\pi \cdot(2.5)^{2} & \\
=6.25 \pi & \\
\text { Substitute } 2.5 \text { for } r . \\
\approx 19.63 & \\
\text { Use a calculator. }
\end{array}
$$

- The area of $\odot A$ is about 19.63 square centimeters.
b. $\quad A=\pi r^{2} \quad$ Write formula for the area of a circle.
$113.1=\pi r^{2} \quad$ Substitute 113.1 for A.
$\frac{113.1}{\pi}=r^{2} \quad$ Divide each side by π.
$6 \approx r \quad$ Find the positive square root of each side.
- The radius is about 6 cm , so the diameter is about 12 centimeters.

SECTORS A sector of a circle is the region bounded by two radii of the circle and their intercepted arc. In the diagram below, sector $A P B$ is bounded by $\overline{A P}$, $\overline{B P}$, and $\overparen{A B}$. Theorem 11.3 gives a method for finding the area of a sector.

Theorem 11.3 Area of a Sector

The ratio of the area of a sector of a circle to the area of the whole circle $\left(\pi r^{2}\right)$ is equal to the ratio of the measure of the intercepted are to 360°.
Area of sector $A P B=\frac{m \overparen{A B}}{\pi r^{2}}$, or Area of sector $A P B=\frac{m \overparen{A B}}{360^{\circ}} \cdot \pi r^{2}$

Find the areas of the sectors formed by $\angle U T V$.

Solution

STEP 1 Find the measures of the minor and major arcs.
Because $m \angle U T V=70^{\circ}, m \overparen{U V}=70^{\circ}$ and $m \overparen{U S V}=360^{\circ}-70^{\circ}=290^{\circ}$.
STEP 2 Find the areas of the small and large sectors.

$$
\begin{array}{rlrl}
\text { Area of small sector } & =\frac{m U V}{360^{\circ}} \cdot \pi r^{2} & & \text { Write formula for area of a sector. } \\
& =\frac{70^{\circ}}{360^{\circ}} \cdot \pi \cdot 8^{2} & & \text { Substitute. } \\
& \approx 39.10 & & \text { Use a calculator. } \\
\text { Area of large sector } & =\frac{m \overparen{U S V}}{360^{\circ}} \cdot \pi r^{2} & & \text { Write formula for area of a sector. } \\
& =\frac{290^{\circ}}{360^{\circ}} \cdot \pi \cdot 8^{2} & \text { Substitute. } \\
& \approx 161.97 & & \text { Use a calculator. }
\end{array}
$$

- The areas of the small and large sectors are about 39.10 square units and 161.97 square units, respectively.

