10.3 Apply Properties of Chords

Recall that a chord is a segment with endpoints on a circle. Because its endpoints lie on the circle, any chord divides the circle into two arcs. A diameter divides a circle into two semicircles. Any other chord divides a circle into a minor arc and a major arc.

Theorem 10.3

In the same circle, or in congruent circles, two minor arcs are congruent if and only if their corresponding chords are congruent.

$$
\overparen{A B} \approx \overparen{C D} \text { if and only if } \overline{A B} \cong \overline{C D} \text {. }
$$

BISECTING ARCS If $\overparen{X Y} \cong \overparen{Y Z}$, then the point Y, and any line, segment, or ray that contains Y, bisects $\overparen{X Y Z}$.

Theorem 10.4

If one chord is a perpendicular bisector of another chord, then the first chord is a diameter.

If $\overline{Q S}$ is a perpendicular bisector of $\overline{T R}$, then $\overline{Q S}$ is a diameter of the circle.

Theorem 10.5

If a diameter of a circle is perpendicular to a chord, then the diameter bisects the chord and its arc.
If $\overline{E G}$ is a diameter and $\overline{E G} \perp \overline{D F}$, then $\overline{H D} \cong \overline{H F}$ and $\overparen{G D} \cong \overparen{G F}$.

Theorem 10.6

In the same circle, or in congruent circles, two chords are congruent if and only if they are equidistant from the center.

$$
\overline{A B}=\overline{C D} \text { if and only if } E F=E G .
$$

An inscribed angle is an angle whose vertex is on a circle and whose sides contain chords of the circle. The arc that lies in the interior of an inscribed angle and has endpoints on the angle is called the intercepted arc of the angle.

Theorem 10.7 Measure of an Inscribed Angle Theorem

The measure of an inscribed angle is one half the measure of its intercepted arc.

$$
m \angle A D B=\frac{1}{2} m \overparen{A B}
$$

THEOREM 10.8

If two inscribed angles of a circle intercept the same arc, then the angles are congruent.

THEOREM 10.10

A quadrilateral can be inscribed in a circle if and only if its opposite angles are supplementary.
D, E, F, and G lie on $\odot C$ if and only if
$m \angle D+m \angle F=m \angle E+m \angle G=180^{\circ}$.

