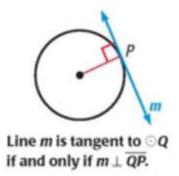

10.1 Use Properties of Tangents

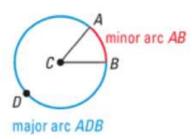
A **circle** is the set of all points in a plane that are equidistant from a given point called the **center** of the circle. A circle with center P is called "circle P" and can be written $\odot P$. A segment whose endpoints are the center and any point on the circle is a **radius**.

A **chord** is a segment whose endpoints are on a circle. A **diameter** is a chord that contains the center of the circle.



A **secant** is a line that intersects a circle in two points. A **tangent** is a line in the plane of a circle that intersects the circle in exactly one point, the *point of tangency*. The *tangent ray* \overrightarrow{AB} and the *tangent segment* \overline{AB} are also called tangents.

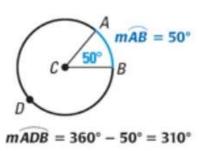
THEOREM 10.1


In a plane, a line is tangent to a circle if and only if the line is perpendicular to a radius of the circle at its endpoint on the circle.

10.2 Find Arc Measures

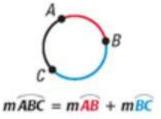
A **central angle** of a circle is an angle whose vertex is the center of the circle. In the diagram, $\angle ACB$ is a central angle of $\bigcirc C$.

If $m \angle ACB$ is less than 180°, then the points on $\bigcirc C$ that lie in the interior of $\angle ACB$ form a **minor arc** with endpoints A and B. The points on $\bigcirc C$ that do not lie on minor arc \widehat{AB} form a **major arc** with endpoints A and B. A **semicircle** is an arc with endpoints that are the endpoints of a diameter.



NAMING ARCS Minor arcs are named by their endpoints. The minor arc associated with $\angle ACB$ is named \widehat{AB} . Major arcs and semicircles are named by their endpoints and a point on the arc. The major arc associated with $\angle ACB$ can be named \widehat{ADB} .

Measuring Arcs


The **measure of a minor arc** is the measure of its central angle. The expression \widehat{mAB} is read as "the measure of arc AB."

The measure of the entire circle is 360°. The measure of a major arc is the difference between 360° and the measure of the related minor arc. The measure of a semicircle is 180°.

POSTULATE 23 Arc Addition Postulate

The measure of an arc formed by two adjacent arcs is the sum of the measures of the two arcs.

CONGRUENT CIRCLES AND ARCS Two circles are **congruent circles** if they have the same radius. Two arcs are **congruent arcs** if they have the same measure and they are arcs of the same circle or of congruent circles. If $\bigcirc C$ is congruent to $\bigcirc D$, then you can write $\bigcirc C \cong \bigcirc D$.