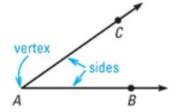
An **angle** consists of two different rays with the same endpoint. The rays are the **sides** of the angle. The endpoint is the **vertex** of the angle.

The angle with sides \overrightarrow{AB} and \overrightarrow{AC} can be named $\angle BAC$, $\angle CAB$, or $\angle A$. Point A is the vertex of the angle.

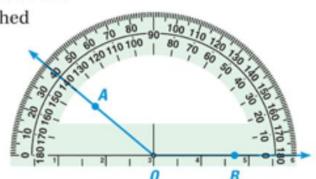


POSTULATE 3 Protractor Postulate

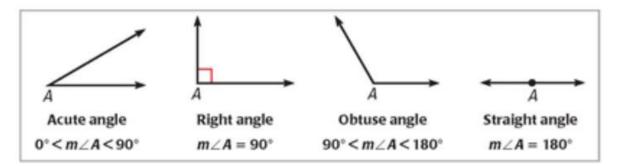
Consider \overrightarrow{OB} and a point A on one side of \overrightarrow{OB} .

The rays of the form \overrightarrow{OA} can be matched one to one with the real numbers from 0 to 180.

The **measure** of $\angle AOB$ is equal to the absolute value of the difference between the real numbers for \overrightarrow{OA} and \overrightarrow{OB} .



CLASSIFYING ANGLES Angles can be classified as **acute**, **right**, **obtuse**, and **straight**, as shown below.



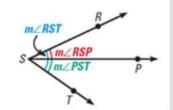
READ DIAGRAMS

A point is in the interior of an angle if it is between points that lie on each side of the angle.

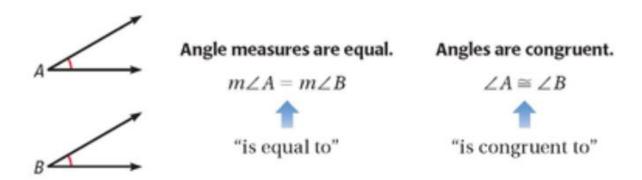
POSTULATE 4 Angle Addition Postulate

Words If *P* is in the interior of $\angle RST$, then the measure of $\angle RST$ is equal to the sum of the measures of $\angle RSP$ and $\angle PST$.

Symbols If *P* is in the interior of $\angle RST$, then $m \angle RST = m \angle RSP + m \angle PST$.



CONGRUENT ANGLES Two angles are **congruent angles** if they have the same measure. In the diagram below, you can say that "the measure of angle A is equal to the measure of angle B," or you can say "angle A is congruent to angle B."



An **angle bisector** is a ray that divides an angle into two angles that are congruent. In the activity on the previous page, \overrightarrow{BD} bisects $\angle ABC$. So, $\angle ABD \cong \angle DBC$ and $m\angle ABD = m\angle DBC$.